Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Biochemistry (Mosc) ; 89(Suppl 1): S57-S70, 2024 Jan.
Article En | MEDLINE | ID: mdl-38621744

Neurodegenerative diseases are a growing global health problem with enormous consequences for individuals and society. The most common neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, can be caused by both genetic factors (mutations) and epigenetic changes caused by the environment, in particular, oxidative stress. One of the factors contributing to the development of oxidative stress that has an important effect on the nervous system is vitamin K, which is involved in redox processes. However, its role in cells is ambiguous: accumulation of high concentrations of vitamin K increases the content of reactive oxygen species increases, while small amounts of vitamin K have a protective effect and activate the antioxidant defense systems. The main function of vitamin K is its involvement in the gamma carboxylation of the so-called Gla proteins. Some Gla proteins are expressed in the nervous system and participate in its development. Vitamin K deficiency can lead to a decrease or loss of function of Gla proteins in the nervous system. It is assumed that the level of vitamin K in the body is associated with specific changes involved in the development of dementia and cognitive abilities. Vitamin K also influences the sphingolipid profile in the brain, which also affects cognitive function. The role of vitamin K in the regulation of biochemical processes at the cellular and whole-organism levels has been studied insufficiently. Further research can lead to the discovery of new targets for vitamin K and development of personalized diets and therapies.


Neurodegenerative Diseases , Vitamin K , Humans , Vitamin K/metabolism , Neurodegenerative Diseases/metabolism , Antioxidants/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism
2.
Life (Basel) ; 13(12)2023 Nov 28.
Article En | MEDLINE | ID: mdl-38137873

Background: Retrotransposons with long terminal repeats (LTR retrotransposons) are widespread in all groups of eukaryotes and are often both the cause of new mutations and the source of new sequences. Apart from their high activity in generative and differentiation-stage tissues, LTR retrotransposons also become more active in response to different stressors. The precise causes of LTR retrotransposons' activation in response to stress, however, have not yet been thoroughly investigated. Methods: We used RT-PCR to investigate the transcriptional profile of LTR retrotransposons and piRNA clusters in response to oxidative and chronic heat stresses. We used Oxford Nanopore sequencing to investigate the genomic environment of new insertions of the retrotransposons. We used bioinformatics methods to find the stress-induced transcription factor binding sites in LTR retrotransposons. Results: We studied the transposition activity and transcription level of LTR retrotransposons in response to oxidative and chronic heat stress and assessed the contribution of various factors that can affect the increase in their expression under stress conditions: the state of the piRNA-interference system, the influence of the genomic environment on individual copies, and the presence of the stress-induced transcription factor binding sites in retrotransposon sequences. Conclusions: The main reason for the activation of LTR retrotransposons under stress conditions is the presence of transcription factor binding sites in their regulatory sequences, which are triggered in response to stress and are necessary for tissue regeneration processes. Stress-induced transposable element activation can function as a trigger mechanism, triggering multiple signal pathways and resulting in a polyvariant cell response.

...